Больничный лист

Защита от вредного влияния рентгеновых лучей. Рентгеноскопия. Средства радиационной защиты в рентгеновском кабинете Разработка оборудования в РФ

Достаточно большое количество медицинских обследований использует рентгеновские лучи. Об их вреде на организм написаны огромные трактаты, поэтому эта сторона их применения изучена максимально хорошо.

Чтобы обезопасить всех присутствующих в кабинете в момент проведения диагностики, используются специальные защитные двери, ширмы и листы из свинца. Учитывая их важное предназначение, необходимо максимально тщательно подходить к компаниям-изготовителям защитной продукции, доверяя только таким спецам, как, например, компания «МетПромСтар», которая занимается металлопрокатом уже более 10 лет. Ее партнерами за это длительное время стали все лидеры отрасли, что говорит уже о многом. Поэтому, заказывая свинцовые листы для защиты от рентгеновского излучения, можно быть уверенными в стопроцентном качестве каждой единицы, не жалея ни минуты о потраченных на покупку средствах. Обслуживание компания «МетПромСтар» вывела на европейский уровень, предлагая своим клиентам и партнерам защиту от рентгеновских лучей наилучшего качества.

Свинцовые листы для защиты от рентген-лучей: какими они должны быть

Свинец – один из самых используемых металлов в мировой промышленности. Об этом говорят и следующие данные: всего за 5 месяцев его добывают около 2 000 000 тонн. Большая часть сырья уходит в машиностроение, а остальное используют для создания защитных приспособлений от радиации и шума. Практически ни один рентген-кабинет в частном или государственном медицинском учреждении не обходится без свинцовой обшивки стен, защитных дверей из свинца, мобильных свинцовых ширм, а также индивидуальных средств защиты медицинского персонала. Весь этот ассортимент имеется в каталоге компании «МетПромСтар», поэтому купить свинцовые листы и защитные двери можно оптом, сэкономив при этом внушительную сумму.

Исследование рентген-лучами считается одним из самых точных, предоставляя врачам наиболее полную информацию об исследованном органе. На снимке отображается проекция внутреннего органа человека, увидеть который другим способом не представляется возможным. Рентген в России стал применяться более 100 лет назад, но это были в основном частные кабинеты. Первая же государственная клиника была создана 95 лет назад, после чего рентген-диагностику стали использовать все более часто. Сфера ее применения с тех времен существенно расширилась, поэтому и защита от облучения стала более актуальной.

Чтобы защита от радиационных лучей стала стопроцентной, необходимо использовать свинец не менее 20 см толщиной. Именно этот материал используется при создании экранирования в рентген-кабинетах. Листовой свинец необходимой толщины можно заказать в «МетПромСтар» по выгодным ценам, а его доставка будет осуществлена в любой населенный пункт страны.

Все нормы защитных приспособлений в кабинете с рентгеновским излучением регламентируются СанПин №2,6,1. 1192-3. Защита должна быть такой, чтобы экранирующий материал снижал облучение до минимума. И достичь этого можно только правильно подобранными материалами. Это означает, что для каждого конкретного кабинета понадобятся свинцовые листы определенного размера и толщины, что обусловлено размерами самого помещения. Нельзя устанавливать в рентген-кабинете первые попавшиеся листы из свинца, не учитывая его плановые особенности. Способность материала обеспечивать необходимые по нормам параметры защиты называется «свинцовый эквивалент», что означает определенное числовое значение, указывающее на толщину свинцового шара. Так, стационарные средства защиты (двери и окна) должны превышать указанный свинцовый эквивалент на четверть.

Прежде чем устанавливать защиту рентген-кабинета, необходимо провести предварительный расчет каждого из защитных параметров. Свинцовые листы и двери должны четко соответствовать указанным параметрам, не отклоняясь от них ни на миллиметр.

Стационарные средства радиационной защиты процедурной и других помещений рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы (ПД) для персонала и населения (табл. 9.1, т.1, ).

Значения допустимой мощности эффективной дозы ДМЭД (мкЗв/ч) рассчитываются, исходя из основных пределов годовой дозы для соответствующих категорий облучаемых лиц (табл. 9.1, т.1) и возможной продолжительности их пребывания в помещениях и на территориях различного назначения по формуле:

где ПД - основной предел годовой дозы для соответствующей кате-

гории лиц (табл. 9.1, т.1), мЗв; с - продолжительность работы на рентгеновском аппарате в течение года при односменной работе персонала

группы A, c 1500 ч (30-часовая рабочая неделя); п - коэффициент сменности, учитывающий возможность двухсменной работы на рентгеновском аппарате и связанную с этим увеличенную продолжительность облучения персонала группы Б и населения, отн. ед.; Т. коэффициент занятости помещения или территории для соответствующих категорий облучаемых лиц, учитывающий максимально возможную продолжительность их облучения, отн. ед.; 10 - множитель для перевода мЗв в мкЗв.

В табл. 10.1 приведены значения ДМЭД для различных помещений и территорий, в зависимости от значений коэффициентов занятости Т, сменности п и продолжительности работы с учетом сменности t c -n.

Приведенные в табл. 10.1 ДМЭД используются для целей радиационного контроля.

Расчет стационарной защиты при проектировании основан на определении требуемой кратности ослабления К мощности поглощенной дозы в воздухе рентгеновского излучения в данной точке в

отсутствие защиты до такого значения проектной мощности дозы 1 за защитой, которая обеспечивает не превышение ДМЭД. Кратность ослабления К защиты вычисляется по формуле:

где: к - коэффициент перехода от поглощенной дозы в воздухе к эффективной дозе, Зв/Гр; с учетом коэффициента запаса на проектирование, равного 2, консервативно принят 1 Зв/Гр; R - радиационный выход рентгеновского аппарата, мГр-м /(мА-мин); W - рабочая нагрузка рентгеновского аппарата, (мА-мин)/нед; N - коэффициент направленности излучения, отн. ед.; 30 - значение нормированного времени работы рентгеновского аппарата в неделю при односменной работе персонала группы А (30 - часовая рабочая неделя), ч/нед; г - расстояние от фокуса рентгеновской трубки до точки расчета, м; 10 - множитель для перевода мГр в мкГр.

Таблица 10.1

Допустимая мощность эффективной дозы (ДМЭД) в помещениях рентгеновского кабинета, в других помещениях и на прилегающей территории в зависимости от значений параметров Т, n, t c -n

Помещение, территория

Помещения постоянного пребывания персонала группы А (процедурная, комната управления, комната приготовления бария, фотолаборатория, кабинет врача- рентгенолога, предоперационная и ДР-)

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета, имеющие постоянные рабочие места персонала группы Б

Помещения, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета без постоянных рабочих мест (холл, гардероб, лестничная площадка, коридор, комната отдыха, уборная, кладовая и др.)

Помещения эпизодического пребывания персонала группы Б (технический этаж, подвал, чердак и др.)

Палаты стационара, смежные по вертикали и горизонтали с процедурной рентгеновского кабинета

Территория, прилегающая к наружным стенам процедурной рентгеновского кабинета

Значение радиационного выхода R берется из технической документации на рентгеновский аппарат или протокола контроля эксплуатационных параметров в зависимости от напряжения на рентгеновской трубке. При их отсутствии используются средние значения R, приведенные в табл. 6 приложения 3 Правил .

Значения номинальной рабочей нагрузки W и анодного напряжения V , используемых для расчета стационарной защиты рентгеновских кабинетов, в зависимости от типа и назначения рентгеновского аппарата приведены в табл. 10.2. Значения W рассчитаны с учетом регламентированной длительности проведения соответствующих рентгенологических процедур.

Коэффициент направленности N учитывает направление пучка рентгеновского излучения. Суммарно по всем направлениям падения первичного пучка рентгеновского излучения (с учетом всех возможных вариантов позиционирования пациента) значение N принимается равным 1. Для рассеянного излучения значение N принимается 0,05. Для аппаратов с подвижным источником излучения (сканирующие аппараты: рентгеновский компьютерный томограф, стоматологический аппарат для панорамных снимков и др.) значение N принимается равным 0,1.

Таблица 10.2

и анодное напряжение U для расчета __стационарной защиты рентгеновских кабинетов_

Рентгеновская аппаратура*

напряжение,

Флюорографический аппарат с люминесцентным экраном и оптическим переносом изображения, пленочный или цифровой

Флюорографический аппарат со сканирующей линейкой

Флюорографический малодозо- вый аппарат с УРИ, ПЗС- матрицей и цифровой обработкой изображения

Рентгенодиагностический аппарат общего назначения, пленочный или цифровой

Рентгеновские аппараты для интервенционных процедур (ангиографические, хирургические)

Рентгеновский компьютерный томограф

Хирургический передвижной аппарат с УРИ

Палатный рентгеновский аппарат

Рентгеноурологический аппарат

Рентгеновский аппарат для литот- рипсии

Рентгеновская аппаратура*

напряжение,

Маммографический аппарат пленочный или цифровой

Маммографический аппарат с цифровым приемником изображения, сканирующий

Рентгеновский аппарат для планирования лучевой терапии (симулятор)

Аппарат для близкодистанционной рентгенотерапии

Аппарат для дальнедистанционной рентгенотерапии

Остеоденситометр для всего тела

Номинальное

Стоматологический аппарат для прицельных снимков пленочный

Стоматологический аппарат для прицельных снимков высокочувствительный пленочный или цифровой

Стоматологический аппарат для панорамных снимков пленочный или цифровой

Стоматологический рентгеновский компьютерный томограф

Микрофокусный рентгеновский аппарат с максимальным анодным током не более 0,1 мА

Примечания: *Для аппаратов, не вошедших в табл. 11.2, а также при нестандартном применении перечисленных типов аппаратов W рассчитывается по значению фактической экспозиции при стандартизированных значениях анодного напряжения. Для рентгеновских аппаратов, в которых максимальное анодное напряжение ниже указанного в табл. 11.2, при расчетах и измерениях необходимо использовать максимальное напряжение, указанное в технической документации на аппарат.

Расстояние от фокуса рентгеновской трубки до точки расчета определяется по проектной документации на рентгеновский кабинет. За точки расчета защиты принимаются точки, расположенные на высоте 1 м в защищаемом помещении: над и под процедурной - в точках прямоугольной сетки с шагом 1-2 м; смежно по горизонтали - на расстоянии 10 см от стены по всей длине стены с шагом 1-2 м.

На территории учреждения за точки расчета принимают точки, расположенные на расстоянии 10 см от наружной стены помещения процедурной на высоте 1 м, а при наличии окон - до 2 м от основания здания.

При расчете радиационной защиты рентгеновского стоматологического кабинета, расположенного смежно с жилыми помещениями, за точки расчета защиты принимаются точки, расположенные: вплотную к внутренним поверхностям стен кабинета, размещенного смежно по горизонтали с жилыми помещениями; на уровне пола кабинета при расположении жилого помещения под кабинетом; на уровне потолка кабинета при расположении жилого помещения над кабинетом.

На основании рассчитанных значений кратности ослабления

^ определяют необходимые значения свинцовых эквивалентов элементов стационарной защиты. В табл.1 приложения 3 представлены значения свинцовых эквивалентов в зависимости от значения кратности ослабления в диапазоне напряжений на рентгеновской трубке от 50 до 250 кВ.

Средства защиты, поставляемые в виде готовых изделий (защитные двери, защитные смотровые окна, ширмы, ставни, жалюзи и др.), должны обеспечивать кратность ослабления излучения, предусмотренную расчетом защиты, содержащимся в технологической части проекта рентгеновского кабинета.

Для изготовления стационарной защиты могут быть использованы материалы, обладающие необходимыми конструкционными и защитными характеристиками, отвечающие санитарно-гигиеническим требованиям. Защитные характеристики (свинцовые эквиваленты) основных строительных и специальных защитных материалов приведены в табл. 2-5 приложения 3 . При применении материалов, не перечисленных в табл. 2-5 приложения 3 , необходимо иметь документы, подтверждающие их защитные свойства или должны быть определены защитные характеристики в аккредитованных организациях с использованием контрольных образцов.

Расчет защиты для двух или более рентгеновских аппаратов, установленных в одной процедурной, должен проводиться по суммарной рабочей нагрузке от всех аппаратов. Необходимая толщина защитных ограждений выбирается, исходя из максимальных рассчитанных значений кратности ослабления. Эти же требования предъявляются при расчете защиты комнаты управления, смежной с двумя процедурными помещениями.

В процедурной рентгеновского кабинета, где пол расположен непосредственно над грунтом или потолок находится непосредственно под крышей (если она не используется), защита от излучения в этих направлениях не предусматривается.

Коммуникации через стены и перекрытия помещений рентгеновских кабинетов (воздуховод, водопровод, электрический кабель) должны быть оснащены защитой, обеспечивающей безопасность персонала. Коммуникации рекомендуется размещать вне зоны прямого пучка излучения.

Узнать стоимость услуги - отправить заявку


Администрация рентгенотерапевтического или рентгенодиагностического кабинета обязана обеспечивать меры по защите сотрудников и населения от воздействия радиационных факторов, в том числе за счет обеспечения кабинета средствами радиационной защиты.

Согласно СанПиН 2.6.1.1192-03, в медицинской сфере используют три вида средств защиты от радиационного излучения:

Перечень и количество обязательных средств защиты для рентгеновских кабинетов разного профиля приведен в таблице.

Средства защиты необходимы для предотвращения превышения предельных доз облучения при проведении рентгенодиагностических и рентгенотерапевтических процедур.

Предельные дозы облучения для персонала и пациентов рентген-кабинета

В СанПиН.6.1.1192-03 устанавливаются эквивалентные и эффективные дозы облучения для сотрудников рентгеновских кабинетов и населения. Они приведены в таблице.

Стационарные средства радиационной защиты

В группу стационарных средств защиты рентгеновского кабинета входят потолок, пол, стены, смотровые окна, защитные двери, ставни и другие конструктивные элементы помещения. Их задача - снижать рентгеновского излучение до показателей, не превышающих предельные дозы допустимого излучения для сотрудников медицинского учреждения и пациентов.

Стационарную защиту рентген-кабинетов выпускают из материалов с соответствующими конструктивными и защитными свойствами, отвечающих санитарно-гигиеническим нормативам.

Степень защиты стационарных средств выражается в свинцовых эквивалентах. Свинцовые эквиваленты строительных материалов, которые используются в строительстве рентгеновских кабинетов, представлены в Приложении 9 к СанПиН 2.6.1.1192-03.

Допустимые показатели мощности радиационного излучения за объектами стационарной защиты приводятся в таблице.

Передвижные и индивидуальные средства радиационной защиты

В группу мобильных средств радиационной защиты включают:

  • Большую и малую защитные ширмы для персонала. Большая может иметь от 1 до 3 створок и используется для защиты от излучения всего тела (минимальный показатель свинцового эквивалента - 0,25 мм, Pb). Малая применяется для защиты нижней части тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Малую защитную ширму для пациента. Защищает от рентгеновских лучей нижнюю часть тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Поворотный защитный экран. Защищает отдельные части тела в разных положениях: сидя, стоя, лежа (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитную штору. Защищает от рентгеновских лучей все тело, может использоваться как аналог защитной ширмы (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).

Индивидуальная защита от рентгеновских лучей обеспечивается следующими средствами:

  • Шапочкой, которая защищает от рентгеновских лучей голову (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Очками для радиационной защиты глаз (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Воротником, который предназначен для защиты области шеи и щитовидной железы (минимальный показатель свинцового эквивалента для тяжелого воротника - 0,35 мм, Pb, для легкого- 0,25 мм, Pb). Используется самостоятельно или вместе с жилетами и фартуками, у которых есть вырез на шее.
  • Пелериной (накидкойа) для радиационной защиты верхней части груди и плечевого пояса (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).
  • Односторонним фартуком, защищающим переднюю части тела от голеней до шеи (минимальный показатель свинцового эквивалента для легкого фартука - 0,25 мм, Pb, для тяжелого - 0,35 мм, Pb).
  • Двусторонним фартуком для радиационной защиты передней части тела от голеней до шеи и сзади от бедер до лопаток (минимальный показатель свинцового эквивалента для передней части - 0,35 мм, Pb, для остальных частей - 0,25 мм, Pb).
  • Стоматологическим фартуком, с помощью которого защищают от рентгеновских лучей переднюю часть тела при проведении исследований черепа и челюстно-лицевого аппарата (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Жилетом для защиты от излучения органов грудной клетки от поясницы до области плеч (минимальный показатель свинцового эквивалента для легкого жилета спереди - 0,25 мм, Pb, сзади - 0,15 мм, Pb, для тяжелого - 0,35 мм, Pb спереди и 0,25 мм, Pb сзади).
  • Передником для защиты половых органов и костей таза (минимальный показатель свинцового эквивалента для тяжелого передника - 0,5 мм, Pb, для легкого - 0,35 мм, Pb).
  • Юбкой длиной не менее 35 см для защиты половых органов и костей таза со всех сторон (минимальный показатель свинцового эквивалента для тяжелой юбки - 0,5 мм, Pb, для легкой - 0,35 мм, Pb).
  • Перчатками для защиты от излучения нижней части предплечий, запястий и кистей рук (минимальный показатель свинцового эквивалента для тяжелых перчаток 0,25 мм, Pb, для легких - 0,15 мм, Pb).
  • Наборами защитных пластин разных форм для предупреждения облучения отдельных частей тела (минимальный показатель свинцового эквивалента - 1,0-0,5 мм, Pb).
  • Защитными средствами для половых органов (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитными средствами для проведения рентгеновских исследований детей - пеленки с отверстиями и без, трусики (подгузники) (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).

Как контролируется эффективность радиационной защиты рентген-кабинета?

Санитарные норм и правила требуют от медицинских учреждений контролировать соответствие уровня радиационной защиты стационарных, индивидуальных и передвижных средств установленным нормативам. Все защитные средства должны иметь маркировку, а также санитарно-эпидемиологические заключения, подтверждающие, что они могут применяться при проведении рентгеновских исследований.

Не реже 1 раза в 2 года аккредитованные организации осуществляют проверку средств радиационной защиты.

СК «ОЛИМП» поможет подобрать необходимые средства защиты для рентгеновского кабинета

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)
Предусматривается
использование
каталки
Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

Рентгеновское излучение обладает биологическим действием на органы, ткани и на весь организм в целом. Необходимым для работы в рентгеновских кабинетах является создание условий безопасности как для больного, так и для обслуживающего персонала.

Защитные мероприятия сводятся в общем к следующим трем видам:
- защита экранированием,
- защита временем,
- защита расстоянием.

Защитные экраны - это комплекс сооружений из поглощающих материалов, расположенных между источником рентгеновского излучения и телом облучаемого. Сильнее всего рентгеновы лучи поглощаются свинцом благодаря его высокому атомному весу и большому порядковому числу в таблице Менделеева. Поэтому защитные экраны делаются из свинца или из материала, в котором имеется свинец. Изготовляют защитные ширмы различных размеров, фартуки, перчатки из просвинцованной резины и т. д. Для защиты глаз и лица исследователя флюоресцирующий экран со стороны врача покрывается просвинцованным стеклом.

У больных органы , не подлежащие исследованию, должны быть надежно экранированы от облучения за счет уменьшения объема пучка излучения, или закрыты защитными приспособлениями. Обычные строительные (материалы (бетон, кирпич) также достаточно сильно поглощают рентгеновы лучи. При расчете защитного действия этих материалов надо только знать их свинцовый эквивалент, т. е. величину, показывающую скольким миллиметрам свинца соответствует в отношении защиты от рентгеновского излучения определенная толщина данного строительного материала.

Защита временем предусматривает ограниченное пребывание в сфере воздействия рентгеновского излучения. При исследованиях больных необходимо стремиться к тому, чтобы время, в течение которого больной был вынужден находиться под лучами, было минимальным.

Защита расстоянием основана на использовании закона обратных квадратов. Отсюда и правило: как обследуемые, так и персонал должны находиться на максимальном расстоянии от трубки рентгеновского аппарата.

Рентгеноскопия

Методы рентгенологического исследования делятся на основные и специальные. К основным относятся рентгеноскопия и рентгенография, а специальным, - все остальные методы, связанные с использованием рентгеновского излучения.

Рентгеноскопия - просвечивание органов и систем с применением рентгеновых лучей. Рентгенография - производство снимков с помощью рентгеновского излучения. Каждый из этих методов имеет свои особенности, преимущества, недостатки и показания.
Рентгеноскопию можно подразделить на следующие виды: рентгеноскопия с флюоресцирующего экрана, скопил с экрана электронно-оптического усилителя и скопия с кинескопа телевизора.

Показаниями к рентгеноскопии надо считать только обследование больных с заболеваниями органов грудной и брюшной полостей, преимущественно взрослого населения. Этот метод должен ограниченно использоваться в детской практике и не должен применяться для целей профилактических осмотров.

Скопия с экрана электронно-оптического усилителя. Введение электронно-оптического усилителя в клиническую практику в корне изменило отношение к рентгеноскопии и способствовало дальнейшему развитию этого метода на новой основе.

Благодаря использованию ЭОУ стало возможным широкое внедрение для диагностических целей зондирования сосудов, полостей сердца, интраоперационные изучения желчевыделительной системы, рент-генохирургические операции.
К недостаткам этого метода следует добавить невозможность рентгенопальпации под контролем экрана. Существенным неудобством ЭОУ остается то, что окуляр или оптическое приспособление ЭОПа можно рассматривать в лучшем случае двум исследователям при нерегулируемой яркости и резкости изображения.

Скопия с экрана телевизора . Это более совершенный вид визуального наблюдения за функционирующими и системами человека. Применение рентгенотелевидения исключает все выше перечисленные недостатки рентгеноскопии и скопии с экрана ЭОП.

Одним из немногих недостатков рентгенотелевидения является небольшое поле обзора по сравнению с флюоресцирующим экраном рентгеноаппарата. На экране телевизора отображается поле, которое охватывает ЭОУ, оптимальным диаметром усилителя считается 22,5 см (9 дюймов), а флюоресцирующий экран рентгеноаппарата 35х35 см.