Декрет

Влияние ионизирующих излучений на организм. Польза и вред радиоактивного излучения

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являют­ся процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют сво­бодные радикалы Н + и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70% воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами бел­ка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме.

Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химиче­ские соединения, не свойственные организму (токсины). Нарушаются функции кроветворных органов (красного костного мозга), увеличи­вается проницаемость и хрупкость сосудов, происходит расстройство

желудочно-кишечного тракта, ослабевает иммунная система человека, происходит его истощение, перерождение нормальных клеток в зло­качественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изме­нения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Для защиты от ионизирующих излучений применяют следующие методы и средства:

Снижение активности (количества) радиоизотопа, с которым работает человек;

Увеличение расстояния от источника излучения;

Экранирование излучения с помощью экранов и биологиче­ских защит;

Применение средств индивидуальной защиты.

В инженерной практике для выбора типа и материала экрана, его толщины используют уже известные расчетно-экспериментальные данные по кратности ослабления излучений различных радионукли­дов и энергий, представленные в виде таблиц или графических зави­симостей. Выбор материала защитного экрана определяется видом и энергией излучения.

Для защиты от альфа-излучения достаточно 10 см слоя воздуха. При близком расположении от альфа-источника применяют экраны из органического стекла.

Для защиты от бета-излучения рекомендуется использовать материалы с малой атомной массой (алюминий, плексиглас, карболит). Для комплексной защиты от бета- и тормозного гамма-излучения применяют комбинированные двух- и многослойные экраны, у кото­рых со стороны источника излучения устанавливают экран из мате­риала с малой атомной массой, а за ним - с большой атомной массой (свинец, сталь и т.д.).

Для защиты от гамма- и рентгеновского излучения, обладаю­щих очень высокой проникающей способностью, применяют материа­лы с большой атомной массой и плотностью (свинец, вольфрам и др.), а также сталь, железо, бетон, чугун, кирпич. Однако чем меньше атомная масса вещества экрана и чем меньше плотность защитного материала, тем для требуемой кратности ослабления требуется боль­шая толщина экрана.


Для защиты от нейтронного излучения применяют водородо-содержащие вещества: воду, парафин, полиэтилен. Кроме того, нейт­ронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из раз­личных материалов: свинец-полиэтилен, сталь-вода и водные рас­творы гидроокисей тяжелых металлов.

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организ­ма с вдыхаемым воздухом применяют респираторы (для защиты от ра­диоактивной пыли), противогазы (для защиты от радиоактивных газов).

При работе с радиоактивными изотопами применяют халаты, комбинезоны, полукомбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки. При опасности значи-тельного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брю­ки, фартук, халат, костюм), покрывающую все тело или места воз­можного наибольшего загрязнения. В качестве материалов для пле­ночной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При ис­пользовании пленочной одежды в ее конструкции предусматривается принудительная подача воздуха под костюм и нарукавники.

При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины.

При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной пода­чей чистого воздуха под костюм. Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец. При работе с альфа- и бета-препаратами для защиты лица и глаз используют защитные щитки из оргстекла.

На ноги надевают пленочные туфли или бахилы и чехлы, сни­маемые при выходе из загрязненной зоны.

Воздействие радиации на человека зависит от количества энергии ионизирующего излучения, которая поглощается тканями человека. Количество энергии, которая поглощается единицей массы ткани, называется поглощенной дозой . Единицей измерения поглощенной дозы является грей (1 Гр= 1 Дж/кг). Часто поглощенную дозу измеряют в радах (1 Гр = 100 рад).

Однако не только поглощенная доза определяет воздействие радиации на человека. Биологические последствия зависят от вида радиоактивного излучения. Например, альфа-излучение в 20 раз более опасно, чем гамма- или бета-излучение.

Биологическая опасность излучения определяется коэффициентом качества К. При умножении поглощенной дозы на коэффициент качества излучения получается доза, определяющая опасность излучения для человека, которая получила название эквивалентной.

Эквивалентная доза имеет специальную единицу измерения — зиверт (Зв). Часто для измерения эквивалентной дозы используется более мелкая единица — бэр (биологический эквивалент рада), 1 Зв = 100 бэр. Итак, основными параметрами радиации являются следующие (табл. 1).

Таблица. 1. Основные параметры радиации

Экспозиционная и эквивалентная дозы радиации

Для количественной оценки ионизирующего действия рентгеновского и гамма-излучения в сухом атмосферном воздухе используется понятие «экспозиционная доза» — отношение полного заряда ионов одного знака, возникающих в малом объеме воздуха, к массе воздуха в этом объеме. За единицу этой дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица — рентген (Р).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр). Грэй - доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Эта доза не учитывает, какой вид излучения воздействовал на организм человека. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой: ее измеряют в системе СИ в единицах, называемых зивертами (Зв).

Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани. Эта доза также измеряется в зивертах.

Специальная единица эквивалентной дозы - бэр - поглощенная доза любого вида излучения, которая вызывает равный биологический эффект с дозой в 1 рад рентгеновского излучения. Рад - специальная единица поглощенной дозы зависит от свойств излучения и поглощающей среды.

Поглощенная, эквивалентная, эффективная и экспозиционная дозы, отнесенные к единице времени, называются мощностью соответствующих доз.

Условная связь системных единиц:

100 Рад = 100 Бэр = 100 Р = 13 В = 1 Гр.

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины — поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН , которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходят торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа лейкоцитов (лейкоцитоз), раннее старение и др.

Воздействие ионизирующего излучения на организм человека

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н+ и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70 % воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме. Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, нс свойственные организму (токсины). А это в свою очередь влияет на процессы жизнедеятельности отдельных органов и систем организма: нарушаются функции кроветворных органов (красного костного мозга), увеличивается проницаемость и хрупкость сосудов, происходит расстройство желудочно-кишечного тракта, снижается сопротивляемость организма (ослабевает иммунная система человека), происходит его истощение, перерождение нормальных клеток в злокачественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изменения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Перечисленные эффекты развиваются в различные временные промежутки: от секунд до многих часов, дней, лет. Это зависит от полученной дозы и времени, в течение которого она была получена.

Острое лучевое поражение (острая лучевая болезнь) возникает тогда, когда человек в течение нескольких часов или даже минут получает значительную дозу. Принято различать несколько степеней острого лучевого поражения (табл. 2).

Таблица 2. Последствия острого лучевого поражения

Эти градации весьма приблизительны, поскольку зависят от индивидуальных особенностей каждого организма. Например, наблюдались случаи гибели людей и при дозах менее 600 бэр, зато в других случаях удавалось спасти людей и при дозах более 600 бэр.

Острая лучевая болезнь может возникнуть у работников или населения при авариях на объектах ЯТЦ, других объектах, использующих ионизирующие излучения, а также при атомных взрывах.

Хроническое облучение (хроническая лучевая болезнь) возникает при облучении человека небольшими дозами в течение длительного времени. При хроническом облучении малыми дозами, в том числе и от радионуклидов, попавших внутрь организма, суммарные дозы могут быть весьма большими. Наносимое организму повреждение, по крайней мере частично, восстанавливается. Поэтому доза в 50 бэр, приводящая при однократном облучении к болезненным ощущениям, при хроническом облучении, растянутом во времени на 10 и более лет, к видимым явлениям не приводит.

Степень воздействия радиации зависит от того, является ли облучение внешним или внутренним (облучение при попадании радионуклида внутрь организма). Внутреннее облучение возможно при вдыхании загрязненного радионуклидами воздуха, при заглатывании зараженной питьевой воды и пищи, при проникновении через кожу. Некоторые радионуклиды интенсивно поглощаются и накапливаются в организме. Например, радиоизотопы кальция, радия, стронция накапливаются в костях, радиоизотопы йода — в щитовидной железе, радиоизотопы редкоземельных элементов повреждают печень, радиоизотопы цезия, рубидия угнетают кроветворную систему, повреждают семенники, вызывают опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие радиоизотопы, т. к. альфа-частица обладает из-за своей большой массы очень высокой ионизирующей способностью, хотя ее проникающая способность не велика. К таким радиоизотопам относятся изотопы плутония, полония, радия, радона.

Нормирование ионизирующего излучения

Гигиеническое нормирование ионизирующего излучения осуществляется по СП 2.6.1-758-99. Нормы радиационной безопасности (НРБ-99). Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с источниками радиации (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

В табл. 3. приведены основные дозовые пределы облучения. Основные дозовые пределы облучения персонала и населения, указанные в таблице, не включают в себя дозы от природных и медицинских источников ионизирующего излучения, атакже дозы, полученные в результате радиационных аварий. На эти виды облучения в НРБ-99 устанавливаются специальные ограничения.

Таблица 3. Основные дозовые пределы облучения (извлечение из НРБ-99)

* Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А. Далее все нормативные значения для категории персонала приводятся только для группы А.

** Относится к среднему значению в покровном слое толщиной 5 мг/см 2 . На ладонях толщина покровного слоя — 40 мг/см 2 .

Помимо дозовых пределов облучения в НРБ-99 устанавливаются допустимые уровни мощности дозы при внешнем облучении, пределы годового поступления радионуклидов, допустимые уровни загрязнения рабочих поверхностей и т. д., которые являются производными от основных дозовых пределов. Числовые значения допустимого уровня загрязнения рабочих поверхностей приведены в табл. 4.

Таблица 4. Допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, частиц/(см 2 . мин) (извлечение из НРБ-99)

Объект загрязнения

a-активные нуклиды

β-активные нуклиды

отдельные

Неповрежденная кожа, полотенца, слецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в сан шлюзах

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

Для ряда категорий персонала устанавливаются дополнительные ограничения. Например, для женщин в возрасте до 45 лет эквивалентная доза, приходящаяся на нижнюю часть живота, не должна превышать 1 мЗв в месяц.

При установлении беременности женщин из персонала работодатели обязаны переводить их на другую работу, нс связанную с излучением.

Для учащихся в возрасте до 21 года, проходящих обучение с источниками ионизирующего излучения, принимаются дозовые пределы, установленные для лиц из населения.

В повседневной жизни человека ионизирующие излучения встречаются постоянно. Мы их не ощущаем, но не можем отрицать их воздействия на живую и неживую природу. Не так давно люди научились использовать их как во благо, так и в качестве оружия массового истребления. При правильном использовании эти излучения способны изменить жизнь человечества в лучшую сторону.

Виды ионизирующих излучений

Чтобы разобраться с особенностями влияния на живые и неживые организмы, нужно выяснить, какими они бывают. Также важно знать их природу.

Ионизирующее излучение - это особенные волны, которые способны проникать через вещества и ткани, вызывая ионизацию атомов. Существует несколько его видов: альфа-излучение, бета-излучение, гамма-излучение. Все они имеют разный заряд и способности действовать на живые организмы.

Альфа-излучение самое заряженное из всех видов. Оно обладает огромной энергией, способной даже в малых дозах вызывать лучевую болезнь. Но при непосредственном облучении проникает только в верхние слои кожи человека. От альфа-лучей защищает даже тонкий лист бумаги. В то же время, попадая в организм с едой или со вдохом, источники этого излучения довольно быстро становятся причиной смерти.

Бета-лучи несут немного меньший заряд. Они способны проникать глубоко в организм. При длительном облучении становятся причиной смерти человека. Меньшие дозы вызывают изменение в клеточной структуре. Защитой может послужить тонкий лист алюминия. Излучение изнутри организма также смертельно.

Самым опасным считается гамма-излучение. Оно проникает насквозь организма. В больших дозах вызывает радиационный ожог, лучевую болезнь, смерть. Защитой от него может быть только свинец и толстый слой бетона.

Особенной разновидностью гамма-излучения считаются рентгеновские лучи, которые генерируются в рентгеновской трубке.

История исследований

Впервые об ионизирующих излучениях мир узнал 28 декабря 1895 года. Именно в этот день Вильгельм К. Рентген объявил, что открыл особый вид лучей, способных проходить через разные материалы и человеческий организм. С этого момента многие врачи и ученые начали активно работать с этим явлением.

Длительное время никто не знал о его влиянии на человеческий организм. Поэтому в истории известно немало случаев гибели от чрезмерного облучения.

Супруги Кюри подробно изучили источники и свойства, которые имеет ионизирующее излучение. Это дало возможность использовать его с максимальной пользой, избегая негативных последствий.

Естественные и искусственные источники излучений

Природа создала разнообразные источники ионизирующего излучения. В первую очередь это радиация солнечных лучей и космоса. Большая ее часть поглощается озоновым шаром, который находится высоко над нашей планетой. Но некоторая их часть достигает поверхности Земли.

На самой Земле, а точнее в ее глубинах, есть некоторые вещества, продуцирующие радиацию. Среди них - изотопы урана, стронция, радона, цезия и другие.

Искусственные источники ионизирующих излучений созданы человеком для разнообразных исследований и производства. При этом сила излучений может в разы превышать естественные показатели.

Даже в условиях защиты и соблюдения мер безопасности люди получают опасные для здоровья дозы облучения.

Единицы измерения и дозы

Ионизирующее излучение принято соотносить с его взаимодействием с человеческим организмом. Поэтому все единицы измерения так или иначе связаны со способностью человека поглощать и накапливать энергию ионизации.

В системе СИ дозы ионизирующего излучения измеряются единицей, именуемой грей (Гр). Она показывает количество энергии на единицу облучаемого вещества. Один Гр равен одному Дж/кг. Но для удобства чаще используется внесистемная единица рад. Она равна 100 Гр.

Радиационный фон на местности измеряется экспозиционными дозами. Одна доза равна Кл/кг. Эта единица используется в системе СИ. Внесистемная единица, соответствующая ей, называется рентген (Р). Чтобы получить поглощенную дозу 1 рад, нужно поддаться облучению экспозиционной дозой около 1 Р.

Поскольку разные виды ионизирующих излучений имеют разный заряд энергии, его измерение принято сравнивать с биологическим влиянием. В системе СИ единицей такого эквивалента выступает зиверт (Зв). Внесистемный его аналог - бэр.

Чем сильнее и дольше излучение, тем больше энергии поглощается организмом, тем опаснее его влияние. Чтобы узнать допустимое время пребывания человека в радиационном загрязнении, используются специальные приборы - дозиметры, осуществляющие измерение ионизирующего излучения. Это бывают как приборы индивидуального пользования, так и большие промышленные установки.

Влияние на организм

Вопреки бытующему мнению, не всегда опасно и смертельно любое ионизирующее излучение. Это можно увидеть на примере с ультрафиолетовыми лучами. В малых дозах они стимулируют генерацию витамина D в человеческом организме, регенерацию клеток и увеличение пигмента меланина, дающего красивый загар. Но длительное облучение вызывает сильные ожоги и может стать причиной развития рака кожи.

В последние годы активно изучается воздействие ионизирующего излучения на человеческий организм и его практическое применение.

В небольших дозах излучения не причиняют никакого вреда организму. До 200 милирентген могут снизить количество белых кровяных клеток. Симптомом такого облучения будут тошнота и головокружение. Около 10% людей гибнут, получив такую дозу.

Большие дозы вызывают расстройство пищеварительной системы, выпадение волос, ожоги кожи, изменения клеточной структуры организма, развитие раковых клеток и смерть.

Лучевая болезнь

Длительное действие ионизирующего излучения на организм и получение им большой дозы облучения могут стать причиной лучевой болезни. Больше половины случаев этого заболевания ведут к летальному исходу. Остальные становятся причиной целого ряда генетических и соматических заболеваний.

На генетическом уровне происходят мутации в половых клетках. Их изменения становятся очевидными в следующих поколениях.

Соматические болезни выражаются канцерогенезом, необратимыми изменениями в разных органах. Лечение этих заболеваний длительное и довольно трудное.

Лечение лучевых поражений

В результате патогенного воздействия радиации на организм возникают различные поражения органов человека. В зависимости от дозы облучения проводят разные методы терапии.

В первую очередь больного помещают в стерильную палату, чтобы избежать возможности инфицирования открытых пораженных участков кожи. Далее проводят специальные процедуры, способствующие скорому выведению из организма радионуклидов.

При сильных поражениях может понадобиться пересадка костного мозга. От радиации он теряет способность воспроизводить красные кровяные клетки.

Но в большинстве случаев лечение легких поражений сводится к обезболиванию пораженных участков, стимулированию регенерации клеток. Большое внимание уделяется реабилитации.

Влияние ионизирующего излучения на старение и рак

В связи с влиянием ионизирующих лучей на организм человека ученые проводили разные эксперименты, доказывающие зависимость процессов старения и канцерогенеза от дозы облучения.

В лабораторных условиях подвергались облучениям группы клеточных культур. Вследствие этого удалось доказать, что даже незначительное облучение способствует ускорению старения клеток. При этом чем старше культура, тем больше она подвержена этому процессу.

Длительное же облучение приводит к гибели клеток или аномальному и быстрому их делению и росту. Этот факт свидетельствует о том, что ионизирующее излучение на организм человека оказывает канцерогенное действие.

В то же время воздействие волн на пораженные раковые клетки приводило к их полной гибели или остановке процессов их деления. Это открытие помогло разработать методику лечения раковых опухолей человека.

Практическое применение радиации

Впервые излучения начали использовать в медицинской практике. С помощью рентгеновских лучей врачам удалось заглянуть внутрь человеческого организма. При этом вреда ему практически не наносилось.

Далее с помощью облучения начали лечить раковые заболевания. В большинстве случаев этот метод оказывает положительное влияние, невзирая на то что весь организм подвергается сильному воздействию излучения, влекущему за собой ряд симптомов лучевой болезни.

Кроме медицины, ионизирующие лучи используются и в других отраслях. Геодезисты с помощью радиации могут изучить особенности строения земной коры на ее отдельных участках.

Способность некоторых ископаемых выделять большое количество энергии человечество научилось использовать в собственных целях.

Атомная энергетика

Именно за атомной энергией будущее всего населения Земли. Атомные электростанции выступают источниками сравнительно недорогого электричества. При условии их правильной эксплуатации такие электростанции намного безопаснее, чем ТЭС и ГЭС. От атомных электростанций намного меньше загрязнения окружающей среды как лишним теплом, так и отходами производства.

В то же время на основании атомной энергии ученые разработали оружие массового поражения. На данный момент на планете атомных бомб столько, что запуск незначительного их количества может стать причиной ядерной зимы, вследствие которой погибнут практически все живые организмы, населяющие ее.

Средства и способы защиты

Использование в повседневной жизни радиации требует серьезных мер предосторожности. Защита от ионизирующих излучений делится на четыре типа: временем, расстоянием, количеством и экранированием источников.

Даже в среде с сильным радиационным фоном человек может находиться некоторое время без вреда для своего здоровья. Именно этот момент определяет защиту временем.

Чем больше расстояние до источника излучения, тем меньше доза поглощаемой энергии. Поэтому стоит избегать близкого контакта с местами, где есть ионизирующее излучение. Это гарантированно убережет от нежелательных последствий.

Если есть возможность использовать источники с минимальным излучением, им в первую очередь отдается предпочтение. Это и есть защита количеством.

Экранирование же означает создание барьеров, через которые не проникают вредоносные лучи. Примером тому служат свинцовые ширмы в рентгеновских кабинетах.

Бытовая защита

В случае объявления радиационной катастрофы следует немедленно закрыть все окна и двери, постараться запастись водой из закрытых источников. Еда должна быть только консервированной. При перемещении на открытой местности максимально закрыть тело одеждой, а лицо - респиратором или влажной марлей. Стараться не заносить в дом верхнюю одежду и обувь.

Необходимо также приготовиться к возможной эвакуации: собрать документы, запас одежды, воды и еды на 2-3 суток.

Ионизирующие излучения как экологический фактор

На планете Земля довольно много загрязненных радиацией участков. Причиной тому служат как естественные процессы, так и техногенные катастрофы. Самые известные из них - авария на ЧАЭС и атомные бомбы над городами Хиросима и Нагасаки.

В таких местах человек не может находиться без вреда для собственного здоровья. В то же время не всегда есть возможность узнать заранее о радиационном загрязнении. Порой даже некритический радиационный фон может стать причиной катастрофы.

Причиной тому служит способность живых организмов поглощать и накапливать радиацию. При этом они сами превращаются в источники ионизирующего излучения. Всем известные «черные» анекдоты о чернобыльских грибах основаны именно на этом свойстве.

В таких случаях защита от ионизирующих излучений сводится к тому, что все потребительские продукты поддаются тщательному радиологическому изучению. В то же время на стихийных рынках всегда есть шанс купить именно знаменитые «чернобыльские грибы». Поэтому стоит воздержаться от покупок у непроверенных продавцов.

Человеческий организм склонен накапливать опасные вещества, вследствие чего происходит постепенное отравление изнутри. Неизвестно, когда именно дадут о себе знать последствия влияния этих ядов: через день, год или через поколение.

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 .10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 . 10 17 ...5 . 10 19 Гц) и гамма-излучением (более 5 . 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью . Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 .10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада (Т 1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т 1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А 0 — начальная активность, А — активность через период времени t .

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. , получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).