Увольнение

Принцип дополнительности и его методологическое значение. Принцип дополнительности, его проявления и сущность. Смотреть что такое "принцип дополнительности" в других словарях

Вадим Руднев

Принцип дополнительности - методологический принцип, сформулированный Нильсом Бором применительно к квантовой физике, согласно которому, для того чтобы наиболее адекватно описать физический объект, относящийся к микромиру, его нужно описывать во взаимоисключающих, дополнительных системах описания, например одновременно и как волну, и как частицу (ср. многозначные логики).

Вот как интерпретирует культурологическую значимость П. д. для ХХ в. русский лингвист и семиотик В. В. Налимов:

"Классическая логика оказывается недостаточной для описания внешнего мира. Пытаясь осмыслить это философски, Бор сформулировал свой знаменитый принцип дополнительности (здесь и далее в цитатах курсив и разрядка авторские - В.Р), согласно которому для воспроизведения в знаковой системе целостного явления необходимы взаимоисключающие, дополнительные классы понятий.

Это требование эквивалентно расширению логической структуры языка физики. Бор использует, казалось бы, очень простое средство: признается допустимым взаимоисключающее употребление двух языков, каждый из которых базируется на обычной логике. Они описывают исключающие друг друга физические явления, например непрерывность и атомизм световых явлений. (...) Бор сам хорошо понимал методологическое значение сформулированного им принципа: "...целостность живых организмов и характеристика людей, обладающих сознанием, а также человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описания". (...) Принцип дополнительности - это, собственно, признание того, что четко построенные логические системы действуют как метафоры: они задают модели, которые ведут себя и как внешний мир, и не так. Одной логической конструкции оказывается недостаточно для описания всей сложности микромира. Требование нарушить общепринятую логику при описании картины мира (см. - В. Р.) со всей очевидностью впервые появилось в квантовой механике - и в этом ее особое философское значение".

Позднее Ю. М. Лотман применил расширенное понимание П. д. к описанию семиотики культуры. Вот что он пишет:

"...механизм культуры может быть описан в следующем виде: недостаточность информации, находящейся в распоряжении мыслящей индивидуальности, делает необходимым для нее обращение к другой такой же единице. Если бы мы могли представить себе существо, действующее в условии п о л н о й информации, то естественно было бы предположить, что оно не нуждается в себе подобном для принятия решений. Нормальной для человека ситуацией является деятельность в условиях недостаточной информации. Сколь ни распространяли бы мы круг наших сведений, потребность в информации будет развиваться, обгоняя темп нашего научного прогресса. Следовательно, по мере роста знания незнание будет не уменьшаться, а возрастать, а деятельность, делаясь более эффективной, - не облегчаться, а затрудняться. В этих условиях недостаток информации компенсируется ее стереоскопичностью - возможностью получить совершенно иную проекцию той же реальности - (см. - В.Р.) перевод ее на совершенно другой язык. Польза партнера по коммуникации заключается в том, что он д р у г о й.

П. д. обусловлен и чисто физиологически - функциональной асимметрией полушарий головного мозга - это своего рода естественный механизм для осуществления П. д.

В определенном смысле Бор сформулировал П. д. благодаря тому, что Куртом Геделем была доказана так называемая теорема о неполноте дедуктивных систем (1931). В соответствии с выводом Геделя - система либо непротиворечива, либо неполна.

Вот что пишет по этому поводу В. В. Налимов:

"Из результатов Геделя следует, что обычно используемые непротиворечивые логические системы, на языке которых выражается арифметика, неполны. Существуют истинные утверждения, выразимые на языке этих систем, которые в таких системах доказать нельзя. (...) Из этих результатов следует также, что никакое строго фиксированное расширение аксиом этой системы не может сделать ее полной, - всегда найдутся новые истины, не выразимые ее средствами, но невыводимые из нее. (...)

Общий вывод из теоремы Геделя - вывод, имеющий громадное философское значение: мышление человека богаче его дедуктивных форм.

Другим физическим, но также имеющим философский смысл положением, непосредственно касающимся П. д., является сформулированное великим немецким физиком ХХ в. Вернером Гейзенбергом так называемое соотношение неопределенностей. Согласно этому положению невозможно равным образом точно описать два взаимозависимых объекта микромира, например координату и импульс частицы. Если мы имеем точность в одном измерении, то она будет потеряна в другом.

Философский аналог этого принципа был сформулирован в последнем трактате Людвига Витгенштейна (см. аналитическая философия, достоверность) "О достоверности". Для того чтобы сомневаться в чем-бы то ни было, нечто должно оставаться несомненным. Мы назвали этот принцип Витгенштейна "принципом дверных петель".

Витгенштейн писал:

"В о п р о с ы, которые мы ставим, и наши с о м н е н и я основываются на том, что определенные предложения освобождены от сомнения, что они словно петли, на которых вращаются эти вопросы и сомнения. (...) То есть это принадлежит логике наших научных исследований, что определенные вещи и в с а м о м д е л е несомненны. (...) Если я хочу, чтобы дверь вращалась, петли должны быть неподвижны".

Таким образом, П. д. имеет фундаментальное значение в методологии культуры ХХ в., обосновывая релятивизм познания, что в культурной практике закономерно привело к появлению феномена постмодернизма, который идею стереоскопичности, дополнительности художественных языков возвел в главный эстетический принцип.

Список литературы

Бор Н. Атомная физика и человеческое познание - М., 1960

Гейзенберг В. Шаги за горизонт. - М., 1987.

Налимов В. В. Вероятностная модель языка. - М., 1979.

Лотман Ю. М. Феномен культуры // Лотман Ю. М. Избр. статьи в 3 тт. - Таллинн, 1992. - Т. 1.

Витгенштейн Л. О достоверности / Пер. А. Ф. Грязнова // Вопр. философии, 1984. - М 4.

Руднев В. Текст и реальность: Направление времени в культуре // Wiener slawisticher Almanach, 1987. - В. 17.

Руднев В. О недостоверности // Логос, 1997. - Вып. 9.

методологич. принцип, выдвинутый дат. физиком Н. Бором в связи с интерпретацией квантовой механики. Он формулируется так: в процессе познания для воспроизведения целостности объекта необходимо применять взаимоисключающие, "дополнительные" классы понятий, каждый из к-рых применим в своих особых условиях. Д. п. часто отождествлялся с соотношением неопределенности Гейзенберга. Такое рассмотрение имело, напр., основание в том, что при определенности координаты микрочастицы имеет место неопределенность импульса, и наоборот. Тем самым открывалась возможность использовать эти две характеристики микрообъекта как взаимоисключающие. Однако содержание Д. п. значительно шире, и к этому принципу Бор подошел независимо от соотношения неопределенностей еще на ранних этапах развития квантовой физики. Для объяснения устойчивости атомов и особенностей их излучения Бор ввел свои известные постулаты. Благодаря им удалось непоследовательно соединить в одной модели классич. и квантовые представления о движении электрона. Но применение классич. представлений к области малых квантовых чисел (типично квантовым явлениям) не давало адекватных результатов. Необходимо было философски осмыслить данную ситуацию. Бор выдвигает идею новой формы связи классических и квантовых понятий. Новая идея, получившая в дальнейшем название "дополнительности", устанавливала эту связь, механически перенося старые понятия на новую область, в результате чего классические понятия "дополнялись" квантовыми. В последующем развитии квантовой теории возникли, казалось, непреодолимые гносеологические трудности (о физической природе микрочастиц, о возможности соединения в одной картине их взаимоисключающих сторон). Одной из попыток разрешения этих трудностей и явилась детальная разработка Бором Д. п. Свое название "Complementarity" эта идея получила в период формулировки основных принципов квантовой механики. Осенью 1927 на международном конгрессе физиков в Комо (Швейцария) Бор говорил, что "при описании атомных явлений квантовый постулат выдвигает перед нами задачу развития некоторой теорий „дополнительности“" ("Atomic theory and the description of nature", Camb., 1934, p. 55). Ее осн. требование – необходимость применения взаимоисключающих неадекватных (классич.) понятий в виде "дополнительных пар" для анализа противоречивых свойств квантовых объектов. Бор указывал в докладе "Свет и жизнь" (1932): "Пространственная непрерывность нашей картины распространения света и атомизм световых эффектов являются дополнительными аспектами в. том смысле, что они одинаково объясняют важные черты световых явлений, которые никогда не могут быть приведены в непосредственное противоречие друг с другом, так как их глубокий анализ в терминах механики требует взаимоисключающих экспериментальных устройств" ("Atomic physics and human knowledge", ?. ?., , p. 5). Правильно вскрывая противоречивую природу света, противоположность волновых и корпускулярных свойств, Бор, однако, не видел возможности их внутреннего единства и выдвинул мысль о двух эквивалентных аспектах описания: л и б о корпускула, л и б о волна с последующим в н е ш н и м соположением обоих аспектов (физич. картины микроявлений), что и составляет методологич. суть Д. п. В этом наглядно сказывается непоследовательность филос. позиции Бора. В 30–40-х гг. Бор дал позитивистскую интерпретацию Д. п., выдвинув представление, что Д. п. служит для того, "чтобы символизировать фундаментальное ограничение объективного существования явления независимо от средств наблюдения" (там же, р. 7), и выступив с требованием "радикального пересмотра взглядов на проблему физической реальности" ("Квантово-механическое описание физической реальности", в журн.: "Успехи физ. наук", т. 16, вып. 4, 1936, с. 448). Гейзенберг усматривает прямую связь Д. п. с соотношением неопределенностей. Это приводит его к противопоставлению категорий пространства и времени категории причинности: "Пространственно-временное описание процессов, с одной стороны, и классический закон причинности – с другой, представляют дополнительные, исключающие друг друга черты физических процессов" ("Физические принципы квантовой теории", М.–Л., 1932, с. 51). В последующем Бор придает Д. п. всеобъемлющий характер, выходящий далеко за пределы физич. явлений. "Цельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур, представляют черты целостности, отображение которых требует типично дополнительного способа описания" ("Квантовая физика и философия", в журн.: "Успехи физ. наук", т. 67, вып. 1, 1959, с. 42). В работах ряда ученых, разделявших крайне позитивистские взгляды (П. Иордан, Ф. Франк, Г. Рейхенбах и др.), Д. п. использовался для пропаганды "краха причинности", "свободы воли" электрона и пр. Ошибочно абсолютизируя роль измерит. прибора, трактуя ее как "неконтролируемое взаимодействие", "приготовление субъектом физической реальности", они не смогли научно объяснить специфику познания микромира. Невозможность одноврем. определения координаты и импульса обусловлена, по их мнению, не противоречивой, корпускулярно-волновой природой микрообъектов, а использованием двух взаимоисключающих классов приборов: одного – для определения пространственно-временных характеристик, другого – импульсно-энергетических. Т.о., специфика процесса познания микроявлений объясняется ими не особенностями познаваемого объекта, а, наоборот, его природа рассматривается как следствие специфики познания. Среди понятий или ситуаций, требующих "дополнительного способа описания", указываются, напр., такие, как разум и инстинкт, свобода воли и детерминизм в психологии; понятие и звуковой фон в лингвистике; механицизм и витализм в биологии; личная свобода и социальное равенство в социологии; правосудие и милосердие в юриспруденции и др. При конкретном анализе этих противоречий с позиции Д. п. иногда обнаруживается внешнее сходство с диалектикой. На этом основании в зап. лит-ре, в частности в швейцарском журнале "Dialectika", стало модным отождествление диалектич. противоположностей с "дополнительностями" (взаимоисключающими сторонами познаваемого объекта) и, соответственно, диалектики с методом "дополнительности". Это отождествление необоснованно. Д. п. предполагает механистический разрыв противоположностей, а затем их внешнее рядоположение, в то время как для диалектики характерны не только взаимоисключение, но и объективная взаимосвязь, взаимопроникновение противо-положностей. Концепция "дополнительности" была подвергнута критическому анализу со стороны ряда советских и зарубежных ученых: П. Ланжевена, С. И. Вавилова, В. А. Фока, Луи де Бройля, Д. И. Блохинцева, М. Э. Омельяновского, И. В. Кузнецова, С. Г. Суворова, Л. Яноши и др. Этот критический анализ способствовал расчищению пути для дальнейшего развития физической теории. Тем не менее нек-рые рациональные выводы из методологической концепции Бора, в к-рой стихийно отразились элементы диалектики, могут в силу этого оказаться полезными при разрешении некоторых трудностей в развитии современной физики, напр. в построении теории "элементарных" частиц. Таким образом, методологическая роль Д. п. изменяется с развитием квантовой физики, его значение уменьшается в ходе развития физической теории. Концепция, выдвинутая Бором, сыграла положительную вспомогательную роль на ранних этапах построения и интерпретации квантовой теории. Однако последующая абсолютизация "дополнительного способа описания" и неправомерное возведение его в ранг метода исследования не соответствовали требованиям адекватного, все более углубляющегося познания. Рациональный смысл идеи "дополнительности" и ее первоначальное значение оказались утраченными, когда с ней стали связывать агностицизм, различные субъективистские взгляды на физическую реальность, на проблему причинности и т.п. Но объективное содержание исследований Бора и выводы, логически следующие из них, в известной мере способствовали обогащению научных представлений о диалектическом характере процессов природы. Они показывают необходимость сознательного применения адекватного метода познания – аналога диалектических процессов действительности. Лит.: Блохинцев Д. И., Основы квантовой механики, 2 изд., М.–Л., 1949; его же, Критика философских воззрений так называемой "копенгагенской школы" в физике, в сб.: Философские вопросы современной физики, М., 1952; Александров А. Д., Против идеализма и путаницы в понимании квантовой механики, "Вестн. ЛГУ", 1949, No 4; Кузнецов И. В., Вернер Гейзенберг и его философские позиции в физике, в кн.: Гейзенберг В., Философские проблемы атомной физики, пер. ?. ?. Овчинникова, М., 1953; Омельяновский М. Э., Философские вопросы квантовой механики, М., 1956; ?ок В. ?., Критика взглядов Бора на квантовую механику, в сб.: Философские вопросы современной физики. Под редакцией И. Кузнецова и М. Омельяновского, М., 1958; Сачков Ю. В., О материалистическом истолковании квантовой механики, М., 1959; Философские вопросы современной физики. Сб. [Под редакцией И. В. Кузнецова и М. Э. Омельяновского], М., 1959; Проблема причинности в современной физике. [Под редакцией И. В. Кузнецова и др.], М., I960. А. Познер. Москва.

Году Нильсом Бором.

учения о двух истинах и излагается на патологическом языке .

этимология

Прототип учения о дополнительности можно усматривать у древних софистов , а также в средневековой аверроистской теории «двух истин», см. примирение веры и науки в современном православном модернизме .

В частности, аверроисты заявляли, что верными следует считать и богословское, и атеистическое истолкование одного и того же факта Писания (например, сотворения человека) несмотря на их противоречие.

В первой статье Нильса Бора после конгресса памяти Алессандро Вольты в Комо в сентябре 1927 года, где теория дополнительности была им представлена, «Бор писал: „Идея дополнительности нужна для описания ситуации, которая в своей сути аналогична трудности формулирования понятий вообще, потому что такая трудность уже заложена в различении субъекта и объекта“. В статье 1929 года Бор замечает, что „необходимость обращаться к дополнительному или взаимному способу описания наверно знакома нам по психологическим проблемам“. Ниже в той же работе находится следующий пассаж:

„В частности, кажущийся контраст между постоянным потоком ассоциативного мышления и сохранением единства личности существенно аналогичен с отношением между волновым описание движения материальных частиц… и их неустранимой индивидуальностью“.

Макс Джеммер убедительно показал в 1974 году :102 , что этот именно пассаж является прямым пересказом „Принципов физиологии“ американского психолога Уильяма Джеймса» :163-164 .

Джеммер также указывает на Джеймса как на источник самого термина «дополнительность» :164 .

Труды Джеймса, наряду с интерпретацией философии Кьеркегора датским философом Х. Геффдингом, вдохновили Бора на создание концепции дополнительности .

определение

Принцип дополнительности является разновидностью учения о двух истинах и состоит в том, что, во-первых, в квантовой теории невозможно строгое разделение на субъект и объект исследования, а есть единая нерасчлененная система из наблюдаемого объекта, инструмента наблюдения и самого исследователя.

Во-вторых, поскольку наблюдатель и его инструмент оказывают на результат неустранимое воздействие, то остается рассматривать истинное представление о предмете как комплекс сведений, сочетающихся друг с другом таинственным («дополнительным») образом в духе сочетания несочетаемого .

Согласно Бору, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых дает исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются пространственно-временная и энергетически-импульсная картины.

«Бор считает удобным обозначать термином „дополнительность“ то обстоятельство, что в явлениях, противоречащих друг другу, речь идет о различных, но одинаково существенных аспектах единого четко определенного комплекса сведений об объектах» .

критика

Принцип дополнительности подвергся критике со стороны Эйнштейна, Подольского и Розена, которые показали, что системы наблюдателя и наблюдаемого объекта все же различны между собой. Из этого ясно, что неопределенность есть порок, а не достоинство физической теории, и «дополнительность» обличает неполноту описания мира в теории Нильса Бора.

Замечательно, что философ-гегельянец Александр Кожев, ознакомившись с «принципом неопределенности-дополнительности», сделал вывод о том, что «в области физики истины не существует» . Это верно в том смысле, что такая физика настолько не интересуется истиной, что даже не способна отличить исследователя от исследуемого объекта.

влияние

Принцип дополнительности лег в основу так называемой копенгагенской интерпретации квантовой механики :348 и анализа процесса измерения :357 характеристик микрообъектов.

Согласно этой интерпретации, заимствованные из классической физики, динамические характеристики микрочастицы (ее координата, импульс, энергия и др.) вовсе не присущи частице самой по себе. Смысл и определенное значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определенный смысл и все одновременно могут иметь определенное значение (такой классический объект условно называется измерительным прибором). Роль принципа дополнительности в массовой науке оказалась столь существенной, что Вольфганг Паули даже предлагал назвать квантовую механику «теорией дополнительности», по аналогии с теорией относительности :343 .

принцип дополнительности в массовой культуре и религии

Так как массовая наука является разновидностью массовой культуры, то неудивительно, что применение принципа дополнительности со временем привело к созданию концепции дополнительности, охватывающей не только физику, но и биологию, психологию, культурологию, гуманитарное знание в целом, короче стало фактом массовой культуры.

ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП – один из важнейших методологических и эвристических принципов современной науки. Предложен Н.Бором (1927) при интерпретации квантовой механики: для полного описания квантово-механических объектов нужны два взаимоисключающих («дополнительных») класса понятий, каждый из которых применим в особых условиях, а их совокупность необходима для воспроизведения целостности этих объектов. Физический смысл принципа дополнительности заключается в том, что квантовая теория связана с признанием принципиальной ограниченности классических физических понятий применительно к атомным и субатомным явлениям. Однако, как указывал Бор, «интерпретация эмпирического материала в существенном покоится именно на применении классических понятий» (Бор Н. Избр. науч. труды, т. 2. М., 1970, с. 30). Это означает, что действие квантового постулата распространяется на процессы наблюдения (измерения) объектов микромира: «наблюдение атомных явлений включает такое взаимодействие последних со средствами наблюдения, которым нельзя пренебречь» (там же, с. 37), т.е., с одной стороны, это взаимодействие приводит к невозможности однозначного («классического») определения состояния наблюдаемой системы независимо от средств наблюдения, а с другой стороны, никакое иное наблюдение, исключающее воздействие средств наблюдения, по отношению к объектам микромира невозможно. В этом смысле принцип дополнительности тесно связан с физическим смыслом «соотношения неопределенностей» В.Гейзенберга: при определенности значений импульса и энергии микрообъекта не могут быть однозначно определены его пространственно-временные координаты, и наоборот; поэтому полное описание микрообъекта требует совместного (дополнительного) использования его кинематических (пространственно-временных) и динамических (энергетически-импульсных) характеристик, которое, однако, не должно пониматься как объединение в единой картине по типу аналогичных описаний в классической физике. Дополнительный способ описания иногда называют неклассическим употреблением классических понятий (И.С.Алексеев).

Принцип дополнительности применим к проблеме «корпускулярно-волнового дуализма», которая возникает при сопоставлении объяснений квантовых явлений, основанных на идеях волновой механики (Э.Шредингер) и матричной механики (В.Гейзенберг). Первый тип объяснения, использующий аппарат дифференциальных уравнений, является аналитическим; он подчеркивает непрерывность движений микрообъектов, описываемых в виде обобщений классических законов физики. Второй тип основан на алгебраическом подходе, для которого существен акцент на дискретности микрообъектов, понимаемых как частицы, несмотря на невозможность их описания в «классических» пространственно-временных терминах. Согласно принципу дополнительности, непрерывность и дискретность принимаются как равно адекватные характеристики реальности микромира, они несводимы к некой «третьей» физической характеристике, которая «связала» бы их в противоречивом единстве; сосуществование этих характеристик подходит под формулу «либо одно, либо другое», а выбор из них зависит от теоретических или экспериментальных проблем, возникающих перед исследователем (Дж.Холтон).

Бор полагал, что принцип дополнительности применим не только в физике, но имеет более широкую методологическую значимость. Ситуация, связанная с интерпретацией квантовой механики, «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающими из разделения субъекта и объекта» (там же, с. 53). Такого рода аналогии Бор усматривал в психологии и, в частности, опирался на идеи У.Джеймса о специфике интроспективного наблюдения за непрерывным ходом мышления: подобное наблюдение воздействует на наблюдаемый процесс, изменяя его; поэтому для описания мыслительных феноменов, устанавливаемых интроспекцией, требуются взаимоисключающие классы понятий, что соответствует ситуации описания объектов микрофизики. Другая аналогия, на которую Бор указывал в биологии, связана с дополнительностью между физико-химической природой жизненных процессов и их функциональными аспектами, между детерминистическим и телеологическим подходами. Он обращал также внимание на применимость принципа дополнительности к пониманию взаимодействия культур и общественных укладов. В то же время Бор предупреждал против абсолютизации принципа дополнительности в качестве некоей метафизической догмы.

Тупиковыми можно считать такие интерпретации принципа дополнительности, когда он трактуется как гносеологический «образ» некоей «внутренне присущей» объектам микромира противоречивости, отображаемой в парадоксальных описаниях («диалектических противоречиях») типа «микрообъект является и волной, и частицей», «электрон обладает и не обладает волновыми свойствами» и т.п. Разработка методологического содержания принципа дополнительности – одно из наиболее перспективных направлений в философии и методологии науки. В его рамках рассматриваются применения принципа дополнительности в исследованиях соотношений между нормативными и дескриптивными моделями развития науки, между моральными нормами и нравственным самоопределением человеческой субъективности, между «критериальными» и «критико-рефлексивными» моделями научной рациональности.

Литература:

1. Гейзенберг В. Физика и философия. М., 1963;

2. Кузнецов Б.Г. Принцип дополнительности. М., 1968;

3. Методологические принципы физики. История и современность. М., 1975;

4. Холтон Дж. Тематический анализ науки. М., 1981;

5. Алексеев И.С. Деятельностная концепция познания и реальности. – Избр. труды по методологии и истории физики. М., 1995;

6. Исторические типы научной рациональности, т. 1–2. М., 1997.

Для объяснения соотношения неопределенностей Н. Бор выдвинул принцип дополнительности , противопоставив его принципу причинности. При использовании прибора, позволяющего точно измерить координаты частиц, импульс может быть любым и, следовательно, причинная связь отсутствует. Применяя приборы другого класса, можно точно измерить импульс, а координаты становятся произвольными. В этом случае процесс, по Н. Бору, совершается якобы вне пространства и времени, т.е. следует говорить либо о причинности, либо о пространстве и времени, но не о том и другом вместе.

Принцип дополнительностиявляется методологическим принципом. В обобщенном виде требования принципа дополнительности, как метода научного исследования, можно сформулировать так: для воспроизведения целостности явления на определенном промежуточном этапе его познания необходимо применять взаимоисключающие и взаимоограничивающие друг друга “дополнительные” классы понятий, которые могут использоваться обособленно, в зависимости от особых условий, но только взятые вместе исчерпывают всю поддающуюся определению и передаче информацию.

Так, согласно принципу дополнительности, получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами можно считать координату частицы и ее скорость (импульс), кинетическую и потенциальную энергию, направление и величину импульса.

Принцип дополнительности позволил выявить необходимость учета корпускулярно-волновой природы микроявлений. Действительно, в одних экспериментах микрочастицы, например, электроны, ведут себя как типичные корпускулы, в других – как волновые структуры.

С физической точки зрения принцип дополнительности часто объясняют влиянием измерительного прибора на состояние микрообъекта. При точном измерении одной из дополнительных величин, другая величина в результате взаимодействия частицы с прибором претерпевает полностью неконтролируемое изменение. Хотя такое толкование принципа дополнительности и подтверждается анализом простейших экспериментов, с общей точки зрения оно наталкивается на возражения философского характера. С позиции современной квантовой теории роль прибора в измерениях заключается в “приготовлении” некоторого состояния системы. Состояния, в которых взаимно дополнительные величины имели бы одновременно точно определенные значения, принципиально невозможны, причем, если одна из таких величин точно определена, то значения другой полностью неопределены. Таким образом, фактически принцип дополнительности отражает объективные свойства квантовых систем, не связанных с наблюдателем.

        1. Описание микрообъектов в квантовой механике

Ограниченность применения классической механики к микрообъектам, невозможность с классических позиций описать строение атома, экспериментальное подтверждение гипотезы де-Бройля об универсальности корпускулярно-волнового дуализма, привели к созданию квантовой механики, описывающей свойства микрочастиц с учетом их особенностей.

Создание и становление квантовой механики охватывает период с 1900 года (формулировка Планком квантовой гипотезы) до конца 20-х годов двадцатого века и связано, прежде всего, с работами австрийского физика Э. Шредингера, немецких физиков М. Борна и В. Гейзенберга и английского физика П. Дирака.

Как уже упоминалось, гипотеза де Бройля была подтверждена опытами по дифракции электронов. Постараемся понять, в чем состоит волновой характер движения электрона, и о каких волнах идет речь.

Дифракционная картина, наблюдаемая для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям: в одних направлениях наблюдается большее число частиц, чем в других. Наличие максимума в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц. Таким образом, интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку.

Дифракционная картина для микрочастиц – это проявление статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля больше. Необходимость вероятностного подхода к описанию микрочастиц – важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, то есть считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства отрицательна, что не имеет смысла.

Чтобы устранить указанные трудности немецкий физик М. Борн (1882–1970) в 1926 году предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией . Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: а именно квадрат модуля волновой функции (квадрат амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме.

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движения микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы наблюдаемые на опыте волновые свойства частиц. Основным должно быть уравнение относительно волновой функции, так как ее квадрат определяет вероятность нахождения частицы в заданный момент времени в заданном определенном объеме. Кроме того, искомое уравнение должно учитывать волновые свойства частиц, то есть должно быть волновым уравнением.

Основное уравнение квантовой механики сформулировано в 1926 году Э. Шредингером. Уравнение Шредингера , как и все основные уравнения физики (например, уравнение Ньютона в классической механике и уравнения Максвелла для электромагнитного поля) не выводится, а постулируется. Правильность уравнения Шредингера подтверждается согласием с опытом получаемых с его помощью результатов, что в свою очередь придает ему характер законов природы.

Волновая функция, удовлетворяющая уравнению Шредингера, не имеет аналогов в классической физике. Тем не менее при очень малых длинах волн де Бройля автоматически совершается переход от квантовых уравнений к классическим, подобно тому, как волновая оптика переходит в лучевую для коротких длин волн. Оба предельные переходы в математическом отношении совершаются аналогично.

Открытие нового структурного уровня строения материи и квантовомеханического способа его описания заложило основы физики твердого тела. Были поняты строение металлов, диэлектриков, полупроводников, их термодинамические, электрические и магнитные свойства. Открылись пути целенаправленного поиска новых материалов с необходимыми свойствами, пути создания новых производств, новых технологий. Большие успехи были достигнуты в результате применения квантовой механики к ядерным явлениям. Квантовая механика и ядерная физика объяснили, что источником колоссальной энергии звезд являются ядерные реакции синтеза, протекающие при звездных температурах в десятки и сотни миллионов градусов.

Плодотворным оказалось применение квантовой механики к физическим полям . Была построена квантовая теория электромагнитного поля – квантовая электродинамика, объяснившая много новых явлений. Свое место в ряду элементарных частиц занял фотон – частица электромагнитного поля, не имеющая массы покоя. Синтез квантовой механики и специальной теории относительности, осуществленный английским физиком П. Дираком, привел к предсказанию античастиц. Оказалось, что у каждой частицы должен быть как бы свой “двойник” – другая частица с той же массой, но с противоположным электрическим или каким-либо другим зарядом. Дирак предсказал существование позитрона и возможность превращения фотона в пару электрон – позитрон и обратно. Позитрон – античастица электрона – экспериментально был открыт в 1934 г.